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Fading is the time-dependent variation in transmitted signal strength through a complex medium due to
interference or temporally evolving multipath scattering. In this paper we use random matrix theory (RMT)
to establish a first-principles model for fading, including both universal and nonuniversal effects. This model
provides a more general understanding of the most common statistical models (Rayleigh fading and Rice fading)
and provides a detailed physical basis for their parameters. We also report experimental tests on two ray-chaotic
microwave cavities. The results show that our RMT model agrees with the Rayleigh and Rice models in the
high-loss regime, but there are strong deviations in low-loss systems where the RMT approach describes the data
well.
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Considering wave propagation between a source and a
receiver in a complex medium, fading is the time-dependent
variation in the received signal amplitude as the scattering
environment changes and evolves [1]. Fading is a challenging
problem in many situations where waves propagate through
a complicated scattering environment. A common example
is the nighttime variation of AM radio signal reception in
the presence of ray bounce(s) off a time varying ionosphere.
Another common observation of fading is experienced by
radio listeners in automobiles moving among vehicles and
buildings in an urban environment. Fading exists in closed or
open scattering systems and in all types of wave propagation,
and it is broadly studied in wireless communication, satellite-
to-ground links, and time-dependent transport in mesoscopic
conductors [1–7].

The fading amplitude is defined as the ratio of the received
signal to the transmitted signal. The traditional models [1]
of fading work well in certain regimes of radio wave propa-
gation applications, where different probability distribution
functions are chosen depending upon the circumstances.
However, these models are empirically designed for particular
scattering environments and frequency bands, and different
(apparently unrelated) fitting parameters are introduced in
different models. For example, the Rayleigh fading model
applies a one-parameter Rayleigh distribution for the fading
amplitude in an environment where there is no line-of-sight
(LOS) path between the transmitter and the receiver, such as
mobile wireless systems in a metropolitan area [1–4]. The
Rice fading model, on the other hand, applies a two-parameter
distribution for situations with a strong LOS path [1,5,6]. The
detailed physical origins of these models, and their parameters,
are not clear.

The complexity of the wave propagation environment is
advantageous from the perspective of wave chaos theory
because it means that wave propagation is very sensitive
to details, and a statistical description is most appropriate.
For applying wave chaos approaches, the system should be
in the semiclassical limit where the wavelength is much
shorter than the typical size of the scattering system [8].
Researchers have applied random matrix theory (RMT) in

wireless communication [9] and analyzed the information
capacity of fading channels [10–12], or the scattering matrix
(S) and the impedance matrix (Z) of the scattering system
[13–15]. Here we directly apply the random matrix approach
to the fading amplitude.

We derive a RMT-based fading model that includes the
Rayleigh and Rice fading models in the high-loss regime, but
the RMT model also works well in the limit of low propagation
loss. In addition, the RMT approach combined with a model
of nonuniversal features reveals the precise physical meanings
of the fitting parameters in the Rayleigh and Rice models.

Considering a 2 × 2 scattering matrix S which describes a
linear relationship between the input and the output voltage
waves on a network, the two ports can be assumed to
correspond to the transmitter and the receiver. The fading
amplitude is equivalent to the magnitude of the scattering
matrix element |S21|. We start with a RMT description of
the 2 × 2 universal scattering matrix srmt in a wave-chaotic
system [14]. This description assumes total ergodicity and
does not account for system-specific information (such as the
coupling of the ports and the short ray paths between the ports).
For time-reversal invariant wave propagation, the statistics of
|srmt,21| can be generated from RMT, and the only parameter of
the distribution P (|srmt,21|; γ ) is the dephasing rate γ defined
in Ref. [14]. Hemmady et al. [16] found the relationship
between γ and the loss parameter α of the corresponding
closed system as γ = 4πα. The loss parameter α is the ratio
of the closed-cavity mode resonance 3-dB bandwidth to the
mean spacing between cavity modes, α ≡ f/(2Q�f ). Here f

is the frequency, Q is the typical quality factor, and �f is the
mean spacing of the adjacent eigenfrequencies. For an open
fading system, we consider an equivalent closed system in
which uniform absorption accounts for wave energy lost from
the system, and we assume that we can define an equivalent
loss parameter α for the open system [16].

We can analytically derive the distribution of the fading
amplitude P (|srmt,21|; α) for special cases of α. For a lossless
system (α = 0), the distribution of fading amplitude is a
uniform distribution between 0 and 1. For high-loss sys-
tems (α � 1), we can prove that the distribution of fading
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FIG. 1. (Color online) The probability density functions
P (|srmt,21|) generated from two theoretical models. Solid curves
show the numerical results from the RMT model with different
loss parameters (α = 0,0.1,1,10). For higher-loss cases (α = 1 and
α = 10), the corresponding Rayleigh distributions are shown as
dashed curves.

amplitude goes to a Rayleigh distribution P (x = |srmt,21|; σ ) =
x
σ 2 exp(−x2

2σ 2 ) with the relationship

α = 1

8πσ 2
. (1)

This result reveals the physical meaning of the σ parameter of
the Rayleigh fading model, which assumes that the real and
imaginary parts of the complex quantity S21 are independent
and identically distributed Gaussian variables with zero mean
and variance σ 2.

In Fig. 1 we illustrate P (|srmt,21|; α) for different loss
parameter values from the RMT fading model. For higher-loss
cases, we also plot the corresponding Rayleigh distributions
from Eq. (1) to show the convergence of the two models
in the high-loss limit. Note that distributions from the RMT
model in the low-loss region (α � 0.1) deviate from a Rayleigh
distribution.

To apply wave chaos theory to practical systems, in addition
to the universal srmt,21, we also need to account for the
nonchaotic features of the wave system. We employ the
random coupling model (RCM) [16–18], which combines
universal fluctuating properties of a scattering system with
the nonuniversal features arising from the port geometry
and short orbits between the ports, in the impedance matrix
description. The impedance (Z) matrix specifies the linear
relationship between the port voltages and the port currents and
is related to the scattering matrix by Z = Z0(1 + S)/(1 − S),
where Z0 is a diagonal matrix with elements equal to the
characteristic impedances of the transmission lines connected
to the ports. Another method to deal with the coupling between
the scattering channels and the system is the Poisson kernel
that presents the nonchaotic features as an average S̄ in the
scattering matrix description [19,20]. The advantage of the
RCM is that it can separate the chaotic (fluctuating) part and
the nonchaotic (average) part in a simple additive format:

Z(theor) = iXav + R1/2
av (zrmt)R

1/2
av . (2)

Here Z(theor) is the theoretical prediction of the raw measured
impedance matrix Z, and Rav and Xav are the real and
imaginary parts of the system-specific ensemble-averaged
impedance matrix Zav. The matrix Zav can be approximated
by taking the average of the impedances of all realizations in
a finite ensemble, Zav = Z̄. The chaotic part is the universal
impedance matrix zrmt = (1 + srmt)/(1 − srmt).

In the extended RCM [17,18], Hart et al. expressed
the system-specific features in the ensemble wave-scattering
system as

Z(M)
av = iXrad + R

1/2
rad

(
z(M)

so

)
R

1/2
rad , (3)

where Rrad and Xrad are the real and imaginary parts of the
radiation impedance matrix Zrad, which is a diagonal matrix
that quantifies the radiation and near-field characteristics of
the ports. The other system-specific feature is short (major)
trajectory orbits. We define an orbit as a ray trajectory that
originates from one port, bounces on the boundary of the
system or on scattering objects, and then reaches a port. Note
that the line-of-sight signal between the two ports is the first
(shortest) orbit, and that a short orbit is distinct from a periodic
orbit in a closed system [21]. We can compute the short-orbits
contribution matrix z(M)

so of the M shortest orbits from the
known geometry in each realization of the ensemble [17,18].
The matrix elements z

(M)
so,a,b = ∑M

m=1 P
(m)
a,b C

(m)
a,b exp(iS(m)

a,b ) are
the sum of the short-orbit terms of the M shortest orbits
between port a and port b. In each term we consider scattering
on dispersing surfaces (in the geometry factor C

(m)
a,b ), the

survival probability (P (m)
a,b ) of the orbits due to the presence

of mobile perturbers, and the propagation phase advance and
loss (in the action S

(m)
a,b ). The contribution of trajectory orbits

decreases exponentially with the orbit length [17,18]. In a lossy
system Z(M)

av → Zav as M increases [17,18], and only a limited
number of short orbits are required to represent system-specific
features that survive the ensemble average.

According to RMT, the universal complex parameter srmt,21

has zero mean, but the system-specific features of the sum
of short orbits z(M)

so brings about a nonzero bias in the
impedance matrix Z(M)

av (or Zav). Therefore, the measured S21

can have a nonzero mean, and this is similar in character
to the Rice model. The Rice fading model uses the distri-
bution P (x = |srmt,21|; σ,ν) = x

σ 2 exp[−(x2+ν2)
2σ 2 ]I0( xν

σ 2 ), which
contains an additional parameter ν (ν → 0 recovers the
Rayleigh distribution), and I0(·) is the modified Bessel function
of the first kind of order zero. The Rice model is an extension
of the Rayleigh model in which the real and imaginary parts of
S21 are still independent and identical Gaussian variables with
variance σ 2, but the means are generalized to a biased mean of
magnitude ν. The Rice fading model is used in environments
where one signal path, typically the line-of-sight signal, is
much stronger than the others [1,5,6], and the ν parameter is
related to the strength of the strong signal. More generally, we
find that the RMT fading model in the high-loss limit yields an
explicit expression for ν in terms of the short-orbit impedance:

ν = ∣∣s(M)
so,21

∣∣ =
∣∣∣∣∣

2z
(M)
so,21

(
1 + z

(M)
so,11

)(
1 + z

(M)
so,22

) − (
z

(M)
so,21

)2

∣∣∣∣∣
. (4)
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FIG. 2. (Color online) Probability density functions P (|srmt,21|)
from the experimental data (red circles) in (a) the 1

4 bowtie cavity and
(b) the cut-circle cavity, comparing with the RMT model (black solid
lines) and the best-matched Rayleigh distribution (blue dashed lines).
(c) The 1

4 bowtie cavity with the two ports as red dots and the two
perturbers as blue circles. (d) The cut-circle cavity with the two ports
as red dots and the perturber as a blue wedge. (e) Magnitude of |s(M)

so,21|
averaged over a 2-GHz frequency band vs the central frequency in
the 1

4 bowtie cavity, and the ν parameter of the best-matched Rice
distribution.

This result generalizes the meaning of ν to include the
influence of all major (short) paths. Note that when there is
a single strong signal that dominates the sum of all paths,
the ν parameter reverts to the original interpretation of Rice
fading.

We have carried out experimental tests of the RMT fading
model by measuring the complex 2 × 2 scattering matrix S

in two quasi-two-dimensional ray-chaotic microwave cavities.
Both of these cavities have two coupling ports, which we
treat as a transmitter and a receiver. Microwaves are injected
through each port antenna attached to a coaxial transmission
line of characteristic impedance Z0 = 50 �, and each antenna
is inserted into the cavity through a small hole in the lid,
similar to previous setups [16,18,22]. The waves introduced
are quasi-two-dimensional for frequencies below the cutoff
frequency for higher order modes (∼19 GHz) due to the thin
height of the cavities (8 mm in the z direction).

Classical ray chaos arises from the shape of the cavity
walls. One cavity is a symmetry-reduced “bowtie billiard”
made up of two straight walls and two circular dispersing
walls [16,18] shown in Fig. 2(c), and the other cavity is a
“cut-circle billiard” [22] shown in Fig. 2(d). The scales of
the billiards compared to the wavelengths of the microwave
signals (1.7–5.0 cm) put these systems into the semiclassical
limit. To create an ensemble for statistical analysis, we
add two cylindrical metal perturbers to the interior of the
1
4 bowtie cavity and systematically move the perturbers to
create 100 different realizations. For the cut-circle cavity,
the perturber is a Teflon wedge that can be rotated inside

the cavity. We rotate the wedge by 5◦ each time and create
72 different realizations. The perturbers can be considered
scattering objects in the propagation medium, so changing the
positions creates the equivalent of time-dependent scattering
variations that give rise to fading. The 1

4 bowtie cavity is made
of copper, and measurements of the transmission spectrum
at room temperature suggest the loss parameter goes from
α = 0.4 to α = 1.0, varying with the frequency range [18].
The superconducting cut-circle cavity is made of copper with
Pb-plated walls and cooled by a pulsed tube refrigerator to
a temperature of 5.5 K, below the transition temperature
of Pb [22,23]. Measurements of the transmission spectrum
suggest α < 10−1.

The experimental data show good agreement with our RMT
fading model. We first use Z(theor) in Eq. (2) to represent the
measured impedance matrix Z and solve for zrmt (and therefore
srmt). In this process we remove the system-specific features
including all short orbits, so the situation is equivalent to the
Rayleigh fading environment where no direct paths exist. By
choosing data over all realizations in a frequency range, we
can construct the distribution of |srmt,21| and compare with
the prediction of RMT. In Figs. 2(a) and 2(b) we plot the
distributions of the fading amplitude from the RMT model
(black solid lines), the experimental data (red circles), and
a best-matched Rayleigh distribution (blue dashed lines). In
Fig. 2(a), the room-temperature case, the best-matched RMT
model gives a value of the loss parameter α = 0.5 for the
experimental data, which corresponds to σ � (8πα)−0.5 =
0.282. The best-matched Rayleigh distribution yields σ =
0.226. The difference in σ values is due to the fact that the
loss parameter is not very large in this case. Nevertheless,
both models agree with the experimental data well in this
loss regime. In Fig. 2(b), the superconducting cavity case, the
agreement between the experimental data and the RMT model
is much better than the Rayleigh distribution. In fact, in the
very-low-loss region (α � 1), the long exponential tail of a
Rayleigh distribution can never match the RMT theoretical
distribution that is limited to 0 � |srmt,21| � 1.

In the room-temperature case, since the loss parameter
is high enough, we can compare the relationship between
the RMT model and the Rice fading model Eq. (4). In
Fig. 2(e), we compute z(M)

so to include short orbits with length
up to 200 cm (M = 1088) in the 1

4 bowtie cavity, apply
Eq. (4), perform a sliding average over a 2-GHz frequency
band, and plot the magnitude |s(M)

so,21| as the red curve. For
the ν parameter of the Rice model, we first remove the
coupling features from the measured impedance (Z) matrix as
z = R

−1/2
rad (Z − iXrad)R−1/2

rad and convert the impedance matrix
z to s. Then we compare the distribution of |s21| over a 2-GHz
frequency band and 100 realizations with the best-matched
Rice distribution. Since the σ parameter has been determined
by the best-matched Rayleigh distribution as described above
for the fully universal data [Fig. 2(a)], we can use ν as the only
fitting parameter. In Fig. 2(e) we plot the ν parameter for the
best-matched Rice distributions (blue squares) along with the
system-specific average magnitudes of s21 versus the central
frequency of a 2-GHz frequency band. The value of the Rice
ν parameter and the system-specific feature described by our
model agree well.
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One more advantage of applying the RCM is that we can ex-
tend the relations in Eqs. (1) and (4) from the normalized data
to the raw measured data in the high-loss cases. In high-loss
cases, the magnitude of the elements of srmt are much less than
1, so we take the approximation to the lowest order [24]. For
the generalized ν̃ parameter, we only need to replace the z(M)

so
terms by Zav or Z(M)

av in Eq. (4). The generalized σ̃ parameter
is a function of α and all elements of the matrix Zav. If the
transmission between the ports is much less than the coupling
reflection at the ports (i.e., |Zav,21| � |Zav,11|, |Zav,22|), the
modified Rayleigh σ̃ parameter can be simplified to

σ̃ � σ
4
√

Z0,11Rav,11Z0,22Rav,22

|Z0,11 + Zav,11||Z0,22 + Zav,22| . (5)

In conclusion, we have provided a first-principles derivation
of a RMT fading model that reduces to the traditional Rayleigh

and Rice fading models in high-loss scattering environments,
and hence we can explain the physical meanings of the σ

parameter of the Rayleigh distribution and the ν parameter of
the Rice distribution. Moreover, in low-loss environments, the
RMT model can better predict the distribution of the fading
amplitude |S21|. Because wave propagation in a complicated
environment is a common issue in many fields [1–5,7], the
fading model can be applied to wireless communication, global
positioning systems, and mesoscopic physics.
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